$0.25 \times 0.15 \text{ mm}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1(2,3),2(3,2),3(2,3),4(3,2)-Tetrakis(1benzothiophena)cyclotetraphane benzene sesquisolvate

Zhi-Hua Wang, Jian-Wu Shi, Sheng Zhu and Hua Wang*

Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, People's Republic of China Correspondence e-mail: hwang@henu.edu.cn

Received 1 June 2009; accepted 6 July 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.121; data-to-parameter ratio = 14.9.

In the title compound, $C_{32}H_{16}S_4 \cdot 1.5C_6H_6$, the substituted cyclooctatetraene (COT) ring compound has approximate local D_2 point symmetry of the so-called 'saddle' form: the dihedral angles between neighboring benzo[b]thiophene units are 61.33 (4), 61.61 (4), 56.443 (14) and 58.32 (4)°. The short distance [3.545 (1) Å] between an S atom and the centroid of a benzene ring in a neighboring molecule may indicate $S \cdots \pi$ interactions in the crystal.

Related literature

For the synthesis, see: Kauffmann et al. (1978). For related structures, see: Krömer et al. (2000); Mak & Wong (1987); Rajca et al. (1997, 2000); Wang et al. (2007).

Experimental

Crystal data C₃₂H₁₆S₄·1.5C₆H₆ $M_r = 645.85$

Triclinic, $P\overline{1}$ a = 9.5167 (10) Å

b = 13.3035 (14) Å	Z = 2
c = 13.9186 (15) Å	Mo $K\alpha$ radiation
$\alpha = 65.674 \ (1)^{\circ}$	$\mu = 0.33 \text{ mm}^{-1}$
$\beta = 84.646 \ (1)^{\circ}$	$T = 294 { m K}$
$\gamma = 81.955 \ (1)^{\circ}$	$0.41 \times 0.25 \times 0.1$
$V = 1588.7 (3) \text{ Å}^3$	
Data collection	
Bruker SMART CCD	11927 measured

11927 measured reflections
5873 independent reflections
4670 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.021$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 394 parameters $wR(F^2) = 0.121$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.59 \text{ e} \text{ Å}^-$ S = 1.04 $\Delta \rho_{\rm min} = -0.41$ e Å⁻³ 5873 reflections

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Dr Jiange Wang, Luoyang Normal University, for the crystal measurement and Mr Pengtao Ma for discussions. This research was supported by the NSFC (20572015, 20672028, 50803015), the Program for NCET-05-0610, the SRF for ROCS-SEM, the Program for Young Excellent Talents in Henan Universities and the Foundation of Henan University (07YB2R006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2996).

References

- Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kauffmann, T., Greving, B., Kriegesmann, R., Mitschker, A. & Woltermann, A. (1978). Chem. Ber. 111, 1330-1336.
- Krömer, J., Rios-Carreras, I., Fuhrmann, G., Musch, C., Wunderlin, M., Debaerdemaeker, T., Mena-Osteritz, E. & Bäuerle, P. (2000). Angew. Chem. Int. Ed. Engl. 39, 3481-3486.
- Mak, T. C. W. & Wong, H. N. C. (1987). Top. Curr. Chem. 140, 141-164.
- Rajca, A., Safronov, A., Rajca, S. & Shoemaker, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 488-491.
- Rajca, A., Safronov, A., Rajca, S. & Wongsriratanakul, J. (2000). J. Am. Chem. Soc. 122, 3351-3357.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y., Wang, Z., Zhao, D., Wang, Z., Chen, Y. & Wang, H. (2007). Synlett, pp. 2390-2394.

Acta Cryst. (2009). E65, o1841 [doi:10.1107/S1600536809026178]

1(2,3),2(3,2),3(2,3),4(3,2)-Tetrakis(1-benzothiophena)cyclotetraphane benzene sesquisolvate

Z.-H. Wang, J.-W. Shi, S. Zhu and H. Wang

Comment

In current electronic and supramolecular chemistry, the rational design of macrocyclic compound represents one of the most exciting and rapidly developing fields, owing to their potential as functional materials (Krömer *et al.*, 2000). Mostly, the compounds with central COT ring have the "saddle" form (Rajca *et al.*, 1997, Mak & Wong, 1987, Rajca *et al.*, 2000, Wang *et al.*, 2007), such as tetra-*o*-phenylene, tetra-*o*-thiophene. In these "saddle" form molecules, the average dihedral angle of "saddle" form is different when the structural unit is different. Cycloocta[1,2-*b*:4,3-*b*':5,6-*b*":8,7-*b*"]tetrathionaphthene (I), with benza[*b*]thiophene as the structural unit plays an important role on the crystal structure and intermolecular interaction. In present paper, we report the crystal structure of I.

As shown in I (Fig. 1), three orthogonal C_2 axes of symmetry are compatible with the D_2 point group. One pair of the orthogonal chiral axes (e.g., R,R) corresponds to the two 1,1'-linkages and the other pair (e.g., S,S) corresponds to the two 2,2'-linkages of the benza[b]thiophene moieties. The four dihedral angles are 61.329 (35)° between C24-C25-C26-C27-C28-C29-C30-S4-C31 and C16-C17-C18-C23-C22-C21-C20-C19-S3, between C8-C9-C10-C11-C12-C13-C14-S2-C15 61.610 (39)° and C1-C2-C3-C4-C5-C6-C7-C32-S1, 56.443 (14)° between C16-C17-C18-C23-C22-C21-C20-C19-S3 C8-C9-C10-C11-C12-C13-C14-S2-C15, 58.315 and (34)° between C24-C25-C26-C27-C28-C29-C30-S4-C31 and C1-C2-C3-C4-C5-C6-C7-C32-S1. The average value (59.4°) of the four dihedral angles is smaller than that in tetra-o-phenylene with 65° (Rajca et al., 1997) and larger than that in tetra-o-thiophene with 51.7° (Wang et al., 2007). The distance between S1 and the centroid of plane (C25, C26, C27, C28, C29, C30) is 3.378 Å, which indicating obvious S- π interaction between the neighboring molecules. Under the effect of S- π interaction, the molecular arranges with the reversal one in the crystal packing as shown in Fig. 2.

Experimental

The title compound was synthesized according to the method of Kauffmann (1978). The overall yield was improved from 11% to 42.4%. To a solution of 3,3'-bibenzo[*b*]thiophene (0.3850 g, 1.45 mmol) in anhyd Et₂O (50 ml), *n*-BuLi (2.28 M, 1.46 ml, 3.32 mmol, 2.3 eq) was added dropwise at -78 °C, then the reaction mixture was warmed slowly to 50 °C with refluxing for 2 h and then cooled to -78 °C. Dry CuCl₂ (0.9741 g, 7.22 mmol, 5.0 equiv) was added at -78 °C and warmed slowly to -55 °C for 1 h, and then slowly warmed to ambient temperature overnight. After normal work-up, the crude product was purified by column chromatography on silica gel with PE (60–90 °C) /CHCl₃ (3:1, *v/v*) as eluent to yield I (0.1621 g, 42.4%) as a white solid. mp>300 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.12 (d, *J* = 8.0 Hz, 4H), 7.48 (t, *J* = 7.8 Hz, 4H), 7.37 (t, *J* = 7.4 Hz, 4H), 7.25 (d, *J* = 7.6 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 140.8, 138.6, 134.8, 131.3, 125.1, 124.7, 124.4, 122.3. IR: 3056, 2922 (C—H), 1435.5 (C=C) cm⁻¹. HRMS (MAIDI-TOF MS EI⁺) m/z calcd for [C₃₂H₁₆S₄] 528.0135, found 528.0131. Yellow blocks of (I) were obtained by slow evaporation of benzene solution over a period of two weeks.

Refinement

The H atoms were geometrically placed (C—H = 0.93Å) and refined as riding with $U_{iso}(H)=1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. S- π interactions in crystal packing of (I).

1(2,3),2(3,2),3(2,3),4(3,2)-\ Tetrakis(1-benzothiophena)cyclotetraphane benzene sesquisolvate

Crystal	data
---------	------

$C_{32}H_{16}S_4$ ·1.5C6H ₆	Z = 2
$M_r = 645.85$	$F_{000} = 670$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.350 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.5167 (10) Å	Cell parameters from 3538 reflections
b = 13.3035 (14) Å	$\theta = 0.00 - 0.00^{\circ}$
c = 13.9186 (15) Å	$\mu = 0.33 \text{ mm}^{-1}$
$\alpha = 65.674 (1)^{\circ}$	T = 294 K
$\beta = 84.646 \ (1)^{\circ}$	Block, yellow
$\gamma = 81.955 (1)^{\circ}$	$0.41 \times 0.25 \times 0.15 \text{ mm}$
V = 1588.7 (3) Å ³	

Data collection

Bruker SMART CCD diffractometer	5873 independent reflections
Radiation source: fine-focus sealed tube	4670 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
<i>T</i> = 294 K	$\theta_{\text{max}} = 25.5^{\circ}$
ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$

(SADABS; Bruker, 2001)	
$T_{\min} = 0.877, \ T_{\max} = 0.952$	$k = -16 \rightarrow 16$
11927 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.121$	$w = 1/[\sigma^2(F_0^2) + (0.0507P)^2 + 1.0002P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
5873 reflections	$\Delta \rho_{max} = 0.59 \text{ e} \text{ Å}^{-3}$
394 parameters	$\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$
Determine the first the start of the start first first	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.1068 (3)	0.6386 (2)	0.2230 (2)	0.0397 (6)
C2	0.0961 (3)	0.5385 (2)	0.2153 (3)	0.0535 (7)
H2	0.0810	0.5372	0.1507	0.064*
C3	0.1082 (3)	0.4420 (2)	0.3052 (3)	0.0576 (8)
Н3	0.1015	0.3747	0.3013	0.069*
C4	0.1304 (3)	0.4435 (2)	0.4019 (2)	0.0518 (7)
H4	0.1388	0.3773	0.4617	0.062*
C5	0.1400 (3)	0.5421 (2)	0.4101 (2)	0.0423 (6)
Н5	0.1547	0.5423	0.4751	0.051*

C6	0.1276 (2)	0.6421 (2)	0.31980 (19)	0.0344 (5)
C7	0.1259 (2)	0.75439 (19)	0.31116 (18)	0.0319 (5)
C8	0.1456 (2)	0.78278 (18)	0.40068 (18)	0.0321 (5)
C9	0.2687 (2)	0.74267 (19)	0.46507 (18)	0.0347 (5)
C10	0.3936 (3)	0.6788 (2)	0.4529 (2)	0.0440 (6)
H10	0.4040	0.6542	0.3988	0.053*
C11	0.5009 (3)	0.6526 (2)	0.5222 (2)	0.0521 (7)
H11	0.5836	0.6094	0.5150	0.063*
C12	0.4870 (3)	0.6902 (2)	0.6029 (2)	0.0524 (7)
H12	0.5608	0.6719	0.6486	0.063*
C13	0.3664 (3)	0.7535 (2)	0.6163 (2)	0.0475 (7)
H13	0.3576	0.7785	0.6700	0.057*
C14	0.2573 (3)	0.7792 (2)	0.54677 (19)	0.0380 (6)
C15	0.0472 (3)	0.84729 (19)	0.43395 (18)	0.0332 (5)
C16	-0.0901 (2)	0.90222 (18)	0.38884 (18)	0.0323 (5)
C17	-0.1138 (2)	0.97723 (18)	0.28804 (18)	0.0326 (5)
C18	-0.2632 (3)	1.01481 (19)	0.27136 (19)	0.0358 (5)
C19	-0.3476 (3)	0.9663 (2)	0.3631 (2)	0.0398 (6)
C20	-0.4957 (3)	0.9883 (2)	0.3643 (3)	0.0529 (7)
H20	-0.5503	0.9551	0.4256	0.063*
C21	-0.5581 (3)	1.0605 (3)	0.2721 (3)	0.0611 (8)
H21	-0.6563	1.0774	0.2714	0.073*
C22	-0.4768 (3)	1.1085 (3)	0.1800 (3)	0.0592 (8)
H22	-0.5216	1.1562	0.1184	0.071*
C23	-0.3308 (3)	1.0868 (2)	0.1784 (2)	0.0469 (6)
H23	-0.2777	1.1197	0.1163	0.056*
C24	0.0004 (2)	1.01805 (19)	0.20673 (18)	0.0338 (5)
C25	0.0249 (3)	1.1333 (2)	0.15376 (18)	0.0362 (5)
C26	-0.0462 (3)	1.2254 (2)	0.1694 (2)	0.0448 (6)
H26	-0.1216	1.2167	0.2187	0.054*
C27	-0.0033 (4)	1.3285 (2)	0.1110 (2)	0.0567 (8)
H27	-0.0507	1.3899	0.1208	0.068*
C28	0.1104 (4)	1.3430 (2)	0.0372 (3)	0.0626 (9)
H28	0.1383	1.4135	-0.0007	0.075*
C29	0.1816 (3)	1.2545 (2)	0.0197 (2)	0.0532 (7)
H29	0.2564	1.2643	-0.0301	0.064*
C30	0.1387 (3)	1.1492 (2)	0.07885 (19)	0.0407 (6)
C31	0.0942 (3)	0.9515 (2)	0.17253 (18)	0.0355 (5)
C32	0.1042 (2)	0.83069 (19)	0.21043 (18)	0.0339 (5)
C33	0.2633 (3)	0.3588 (4)	0.7185 (2)	0.1020 (15)
Н33	0.1831	0.3940	0.6795	0.122*
C34	0.3502 (5)	0.4197 (2)	0.7428 (3)	0.1141 (19)
H34	0.3282	0.4961	0.7200	0.137*
C35	0.4697 (4)	0.3670 (4)	0.8010 (3)	0.118 (2)
H35	0.5277	0.4081	0.8172	0.142*
C36	0.5032 (3)	0.2531 (4)	0.8351 (2)	0.1134 (18)
H36	0.5837	0.2179	0.8737	0.136*
C37	0.4159 (5)	0.1920 (2)	0.8112 (3)	0.1136 (18)
H37	0.4373	0.1155	0.8345	0.136*

C38	0.2969 (4)	0.2450 (4)	0.7526 (3)	0.1034 (16)
H38	0.2391	0.2039	0.7360	0.124*
C39	0.4111 (5)	0.4474 (5)	0.0892 (4)	0.1025 (15)
H39	0.3517	0.4117	0.1468	0.123*
C40	0.5457 (6)	0.4043 (3)	0.0777 (4)	0.0949 (14)
H40	0.5791	0.3391	0.1330	0.114*
C41	0.6349 (5)	0.4453 (5)	-0.0039 (5)	0.1049 (15)
H41	0.7238	0.4075	-0.0073	0.126*
S1	0.08749 (7)	0.77085 (6)	0.12239 (5)	0.04378 (18)
S2	0.09726 (7)	0.86121 (6)	0.54491 (5)	0.04315 (18)
S3	-0.24494 (7)	0.87555 (5)	0.46789 (5)	0.04184 (18)
S4	0.21218 (7)	1.02532 (6)	0.07232 (5)	0.04525 (18)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0360 (13)	0.0424 (14)	0.0456 (15)	-0.0014 (11)	-0.0032 (11)	-0.0235 (12)
C2	0.0588 (18)	0.0521 (18)	0.0627 (19)	-0.0048 (14)	-0.0055 (15)	-0.0361 (16)
C3	0.0627 (19)	0.0404 (16)	0.079 (2)	-0.0048 (14)	-0.0038 (16)	-0.0334 (16)
C4	0.0505 (17)	0.0332 (14)	0.0655 (19)	-0.0007 (12)	-0.0030 (14)	-0.0150 (13)
C5	0.0404 (14)	0.0366 (14)	0.0457 (15)	0.0000 (11)	-0.0030 (11)	-0.0136 (12)
C6	0.0302 (12)	0.0353 (13)	0.0400 (13)	-0.0012 (10)	-0.0030 (10)	-0.0180 (11)
C7	0.0289 (12)	0.0340 (12)	0.0335 (12)	0.0007 (9)	-0.0036 (9)	-0.0150 (10)
C8	0.0369 (13)	0.0277 (12)	0.0294 (12)	-0.0030 (10)	-0.0037 (10)	-0.0089 (10)
C9	0.0361 (13)	0.0332 (13)	0.0313 (12)	-0.0042 (10)	-0.0038 (10)	-0.0088 (10)
C10	0.0386 (14)	0.0479 (15)	0.0423 (15)	0.0001 (12)	-0.0018 (11)	-0.0167 (12)
C11	0.0365 (15)	0.0588 (18)	0.0518 (17)	0.0031 (13)	-0.0085 (12)	-0.0142 (14)
C12	0.0424 (16)	0.0625 (19)	0.0447 (16)	-0.0080 (14)	-0.0149 (12)	-0.0107 (14)
C13	0.0498 (16)	0.0538 (17)	0.0402 (15)	-0.0083 (13)	-0.0102 (12)	-0.0179 (13)
C14	0.0419 (14)	0.0351 (13)	0.0342 (13)	-0.0050 (11)	-0.0045 (11)	-0.0104 (11)
C15	0.0394 (13)	0.0300 (12)	0.0282 (12)	-0.0045 (10)	-0.0028 (10)	-0.0093 (10)
C16	0.0365 (13)	0.0274 (12)	0.0329 (12)	-0.0015 (10)	-0.0015 (10)	-0.0128 (10)
C17	0.0367 (13)	0.0256 (12)	0.0359 (13)	-0.0017 (10)	-0.0040 (10)	-0.0129 (10)
C18	0.0377 (13)	0.0281 (12)	0.0420 (14)	-0.0016 (10)	-0.0044 (11)	-0.0146 (11)
C19	0.0383 (14)	0.0335 (13)	0.0470 (15)	-0.0005 (11)	-0.0032 (11)	-0.0164 (12)
C20	0.0386 (15)	0.0533 (17)	0.0676 (19)	-0.0058 (13)	0.0030 (14)	-0.0260 (15)
C21	0.0336 (15)	0.064 (2)	0.082 (2)	0.0037 (14)	-0.0114 (15)	-0.0259 (18)
C22	0.0475 (17)	0.0550 (18)	0.068 (2)	0.0022 (14)	-0.0223 (15)	-0.0157 (16)
C23	0.0462 (16)	0.0415 (15)	0.0473 (16)	-0.0028 (12)	-0.0099 (12)	-0.0113 (12)
C24	0.0354 (13)	0.0314 (12)	0.0315 (12)	-0.0040 (10)	-0.0074 (10)	-0.0082 (10)
C25	0.0399 (13)	0.0333 (13)	0.0312 (12)	-0.0045 (10)	-0.0107 (10)	-0.0069 (10)
C26	0.0528 (16)	0.0352 (14)	0.0433 (15)	-0.0032 (12)	-0.0115 (12)	-0.0113 (12)
C27	0.074 (2)	0.0338 (15)	0.0590 (19)	-0.0044 (14)	-0.0219 (16)	-0.0124 (14)
C28	0.073 (2)	0.0376 (16)	0.065 (2)	-0.0198 (15)	-0.0213 (17)	-0.0003 (15)
C29	0.0536 (17)	0.0489 (17)	0.0443 (16)	-0.0188 (14)	-0.0070 (13)	-0.0010 (13)
C30	0.0433 (14)	0.0392 (14)	0.0325 (13)	-0.0090 (11)	-0.0094 (11)	-0.0043 (11)
C31	0.0373 (13)	0.0363 (13)	0.0301 (12)	-0.0049 (10)	-0.0038 (10)	-0.0100 (10)
C32	0.0329 (12)	0.0363 (13)	0.0342 (13)	-0.0038 (10)	-0.0003 (10)	-0.0160 (11)

C33	0.073 (3)	0.145 (5)	0.067 (3)	-0.004 (3)	0.014 (2)	-0.028 (3)
C34	0.137 (5)	0.065 (3)	0.125 (4)	-0.030 (3)	0.063 (4)	-0.032 (3)
C35	0.098 (4)	0.177 (6)	0.137 (5)	-0.086 (4)	0.048 (3)	-0.111 (5)
C36	0.057 (3)	0.182 (6)	0.090 (3)	0.013 (3)	-0.001 (2)	-0.053 (4)
C37	0.129 (4)	0.073 (3)	0.131 (4)	-0.004 (3)	0.050 (4)	-0.047 (3)
C38	0.099 (4)	0.139 (5)	0.111 (4)	-0.058 (3)	0.036 (3)	-0.084 (4)
C39	0.089 (3)	0.132 (4)	0.089 (3)	-0.032 (3)	-0.004 (3)	-0.040 (3)
C40	0.139 (4)	0.054 (2)	0.079 (3)	0.003 (3)	-0.039 (3)	-0.010 (2)
C41	0.067 (3)	0.154 (5)	0.115 (4)	0.001 (3)	-0.006 (3)	-0.079 (4)
S1	0.0533 (4)	0.0462 (4)	0.0358 (3)	-0.0035 (3)	-0.0077 (3)	-0.0201 (3)
S2	0.0516 (4)	0.0441 (4)	0.0374 (4)	0.0043 (3)	-0.0097 (3)	-0.0215 (3)
S3	0.0403 (4)	0.0389 (4)	0.0388 (4)	-0.0031 (3)	0.0036 (3)	-0.0097 (3)
S4	0.0438 (4)	0.0461 (4)	0.0380 (4)	-0.0069 (3)	0.0046 (3)	-0.0099 (3)

Geometric parameters (Å, °)

C1—C2	1.399 (4)	C21—H21	0.9300
C1—C6	1.400 (3)	C22—C23	1.379 (4)
C1—S1	1.737 (3)	C22—H22	0.9300
C2—C3	1.374 (4)	С23—Н23	0.9300
С2—Н2	0.9300	C24—C31	1.362 (3)
C3—C4	1.390 (4)	C24—C25	1.444 (3)
С3—Н3	0.9300	C25—C26	1.403 (4)
C4—C5	1.379 (4)	C25—C30	1.405 (4)
C4—H4	0.9300	C26—C27	1.374 (4)
C5—C6	1.403 (3)	С26—Н26	0.9300
С5—Н5	0.9300	C27—C28	1.397 (5)
C6—C7	1.446 (3)	С27—Н27	0.9300
C7—C32	1.364 (3)	C28—C29	1.373 (4)
С7—С8	1.477 (3)	C28—H28	0.9300
C8—C15	1.360 (3)	C29—C30	1.398 (4)
C8—C9	1.445 (3)	С29—Н29	0.9300
C9—C14	1.400 (3)	C30—S4	1.733 (3)
C9—C10	1.400 (3)	C31—C32	1.462 (3)
C10-C11	1.379 (4)	C31—S4	1.749 (2)
C10—H10	0.9300	C32—S1	1.743 (2)
C11—C12	1.395 (4)	C33—C38	1.3855
C11—H11	0.9300	C33—C34	1.3860
C12—C13	1.370 (4)	С33—Н33	0.9300
C12—H12	0.9300	C34—C35	1.3869
C13—C14	1.395 (3)	C34—H34	0.9300
С13—Н13	0.9300	C35—C36	1.3868
C14—S2	1.741 (3)	С35—Н35	0.9300
C15—C16	1.464 (3)	C36—C37	1.3868
C15—S2	1.745 (2)	С36—Н36	0.9300
C16—C17	1.363 (3)	C37—C38	1.3862
C16—S3	1.741 (2)	С37—Н37	0.9300
C17—C18	1.447 (3)	С38—Н38	0.9300
C17—C24	1.478 (3)	C39—C40	1.352 (6)

C18—C19	1.402 (3)	C39—C41 ⁱ	1.471 (7)
C18—C23	1.402 (3)	С39—Н39	0.9300
C19—C20	1.399 (4)	C40—C41	1.322 (6)
C19—S3	1.739 (3)	C40—H40	0.9300
C20—C21	1.374 (4)	C41—C39 ⁱ	1.471 (7)
C20—H20	0.9300	C41—H41	0.9300
C21—C22	1.388 (4)		
C2—C1—C6	121.4 (3)	С23—С22—Н22	119.4
C2-C1-S1	126.9 (2)	C21—C22—H22	119.4
C6—C1—S1	111.54 (18)	C22—C23—C18	119.5 (3)
C3—C2—C1	118.5 (3)	С22—С23—Н23	120.3
C3—C2—H2	120.8	C18—C23—H23	120.3
C1—C2—H2	120.8	C31—C24—C25	112.1 (2)
C2—C3—C4	121.0 (3)	C31—C24—C17	123.9 (2)
С2—С3—Н3	119.5	C25—C24—C17	124.0 (2)
С4—С3—Н3	119.5	C26—C25—C30	118.9 (2)
C5—C4—C3	120.8 (3)	C26—C25—C24	128.9 (2)
С5—С4—Н4	119.6	C30—C25—C24	112.2 (2)
С3—С4—Н4	119.6	C27—C26—C25	119.2 (3)
C4—C5—C6	119.7 (3)	С27—С26—Н26	120.4
С4—С5—Н5	120.2	С25—С26—Н26	120.4
С6—С5—Н5	120.2	C26—C27—C28	121.1 (3)
C1—C6—C5	118.6 (2)	С26—С27—Н27	119.4
C1—C6—C7	112.3 (2)	С28—С27—Н27	119.4
C5—C6—C7	129.0 (2)	C29—C28—C27	120.9 (3)
C32—C7—C6	111.9 (2)	С29—С28—Н28	119.5
C32—C7—C8	124.2 (2)	С27—С28—Н28	119.5
C6—C7—C8	124.0 (2)	C28—C29—C30	118.3 (3)
C15—C8—C9	112.2 (2)	С28—С29—Н29	120.9
C15—C8—C7	123.5 (2)	С30—С29—Н29	120.9
C9—C8—C7	124.2 (2)	C29—C30—C25	121.5 (3)
C14—C9—C10	118.8 (2)	C29—C30—S4	126.9 (2)
C14—C9—C8	112.2 (2)	C25—C30—S4	111.60 (18)
С10—С9—С8	128.9 (2)	C24—C31—C32	127.3 (2)
С11—С10—С9	119.3 (3)	C24—C31—S4	112.96 (18)
C11—C10—H10	120.4	C32—C31—S4	119.71 (18)
С9—С10—Н10	120.4	C7—C32—C31	127.2 (2)
C10-C11-C12	120.8 (3)	C7—C32—S1	113.15 (18)
C10-C11-H11	119.6	C31—C32—S1	119.69 (17)
C12—C11—H11	119.6	C38—C33—C34	119.6
C13—C12—C11	121.2 (3)	С38—С33—Н33	120.2
C13—C12—H12	119.4	С34—С33—Н33	120.2
C11—C12—H12	119.4	C33—C34—C35	120.1
C12—C13—C14	118.1 (3)	С33—С34—Н34	119.9
С12—С13—Н13	121.0	С35—С34—Н34	119.9
С14—С13—Н13	121.0	C36—C35—C34	120.2
C13—C14—C9	121.8 (2)	С36—С35—Н35	119.9
C13—C14—S2	126.7 (2)	С34—С35—Н35	119.9

C9 - C14 - S2	111 44 (18)	C_{35} C_{36} C_{37}	110 7
C8 - C15 - C16	127.9(2)	C35-C36-H36	120.2
C8 - C15 - S2	113 03 (18)	C_{37} $-C_{36}$ $-H_{36}$	120.2
C16-C15-S2	119.06 (17)	$C_{38} - C_{37} - C_{36}$	120.2
C_{17} $-C_{16}$ $-C_{15}$	127.1.(2)	$C_{38} - C_{37} - H_{37}$	120.0
C17 - C16 - S3	113 18 (18)	C36—C37—H37	120.0
C15-C16-S3	119.76 (17)	$C_{33} - C_{38} - C_{37}$	120.0
C16-C17-C18	111.9 (2)	C33-C38-H38	119.8
C16—C17—C24	123.9 (2)	C37—C38—H38	119.8
C_{18} C_{17} C_{24}	1242(2)	$C40$ $C30$ $C41^{i}$	115 2 (4)
C19-C18-C23	1184(2)	C40-C39-H39	122.4
C_{10} C_{10} C_{17} C_{17}	110.4(2)		122.4
	112.2 (2)	C41-C39-H39	122.4
$C_{23} = C_{18} = C_{17}$	129.3 (2)	C41 - C40 - C39	126.8 (4)
C_{20} C_{10} C_{20} C_{10} C_{20}	122.0(2)	C41 - C40 - H40	110.0
C20—C19—S3	120.0 (2)	C39—C40—H40	110.0
C18—C19—S3	111.39 (18)	C40—C41—C39 ¹	117.8 (4)
C21—C20—C19	118.0 (3)	C40—C41—H41	121.1
C21—C20—H20	121.0	C39 ⁱ —C41—H41	121.1
С19—С20—Н20	121.0	C1—S1—C32	91.15 (12)
C20—C21—C22	121.0 (3)	C14—S2—C15	91.10 (12)
C20—C21—H21	119.5	C19—S3—C16	91.25 (12)
C22—C21—H21	119.5	C30—S4—C31	91.14 (12)
C23—C22—C21	121.1 (3)		
C6—C1—C2—C3	-0.8 (4)	C21—C22—C23—C18	0.1 (4)
S1—C1—C2—C3	-177.0 (2)	C19—C18—C23—C22	0.6 (4)
C1—C2—C3—C4	0.1 (4)	C17—C18—C23—C22	177.9 (3)
C2—C3—C4—C5	0.3 (5)	C16—C17—C24—C31	60.4 (3)
C3—C4—C5—C6	-0.1 (4)	C18-C17-C24-C31	-121.9 (3)
C2—C1—C6—C5	1.0 (4)	C16—C17—C24—C25	-120.1 (3)
S1—C1—C6—C5	177.75 (18)	C18—C17—C24—C25	57.7 (3)
C2—C1—C6—C7	-176.0 (2)	C31—C24—C25—C26	-178.0 (2)
S1—C1—C6—C7	0.7 (3)	C17—C24—C25—C26	2.4 (4)
C4—C5—C6—C1	-0.5 (4)	C31—C24—C25—C30	0.6 (3)
C4—C5—C6—C7	175.9 (2)	C17—C24—C25—C30	-179.0 (2)
C1—C6—C7—C32	0.0 (3)	C30—C25—C26—C27	0.2 (4)
C5—C6—C7—C32	-176.6 (2)	C24—C25—C26—C27	178.7 (2)
C1—C6—C7—C8	-179.8 (2)	C25—C26—C27—C28	-0.5 (4)
C5—C6—C7—C8	3.6 (4)	C26—C27—C28—C29	0.8 (5)
C32—C7—C8—C15	59.8 (3)	C27—C28—C29—C30	-0.9 (4)
C6—C7—C8—C15	-120.5 (3)	C28—C29—C30—C25	0.6 (4)
C32—C7—C8—C9	-122.4 (3)	C28—C29—C30—S4	-179.3 (2)
C6—C7—C8—C9	57.4 (3)	C26—C25—C30—C29	-0.3 (4)
C15—C8—C9—C14	0.3 (3)	C24—C25—C30—C29	-179.0 (2)
C7—C8—C9—C14	-177.8 (2)	C26—C25—C30—S4	179.67 (19)
C15—C8—C9—C10	-176.9 (2)	C24—C25—C30—S4	0.9 (3)
C7—C8—C9—C10	5.0 (4)	C25—C24—C31—C32	178.0 (2)
C14—C9—C10—C11	0.7 (4)	C17—C24—C31—C32	-2.5 (4)
C8—C9—C10—C11	177.8 (2)	C25—C24—C31—S4	-1.9 (3)

C9—C10—C11—C12	-0.8 (4)	C17—C24—C31—S4	177.73 (18)
C10-C11-C12-C13	0.4 (4)	C6—C7—C32—C31	179.1 (2)
C11—C12—C13—C14	0.2 (4)	C8—C7—C32—C31	-1.1 (4)
C12—C13—C14—C9	-0.3 (4)	C6—C7—C32—S1	-0.7 (3)
C12—C13—C14—S2	-177.9 (2)	C8—C7—C32—S1	179.04 (18)
C10-C9-C14-C13	-0.2 (4)	C24—C31—C32—C7	-58.1 (4)
C8—C9—C14—C13	-177.7 (2)	S4—C31—C32—C7	121.7 (2)
C10-C9-C14-S2	177.79 (19)	C24—C31—C32—S1	121.7 (2)
C8—C9—C14—S2	0.2 (3)	S4—C31—C32—S1	-58.5 (2)
C9—C8—C15—C16	-180.0 (2)	C38—C33—C34—C35	-0.1
C7—C8—C15—C16	-1.9 (4)	C33—C34—C35—C36	0.1
C9—C8—C15—S2	-0.7 (3)	C34—C35—C36—C37	-0.4
C7—C8—C15—S2	177.35 (18)	C35—C36—C37—C38	0.7
C8—C15—C16—C17	-58.0 (4)	C34—C33—C38—C37	0.4
S2-C15-C16-C17	122.8 (2)	C36—C37—C38—C33	-0.7
C8—C15—C16—S3	123.5 (2)	C41 ⁱ —C39—C40—C41	-4.3 (8)
S2-C15-C16-S3	-55.7 (2)	C39—C40—C41—C39 ⁱ	4.4 (8)
C15-C16-C17-C18	-179.7 (2)	C2—C1—S1—C32	175.6 (3)
S3—C16—C17—C18	-1.0 (3)	C6-C1-S1-C32	-0.98 (19)
C15—C16—C17—C24	-1.7 (4)	C7—C32—S1—C1	1.00 (19)
S3—C16—C17—C24	177.01 (18)	C31—C32—S1—C1	-178.9 (2)
C16-C17-C18-C19	0.8 (3)	C13—C14—S2—C15	177.3 (2)
C24—C17—C18—C19	-177.2 (2)	C9—C14—S2—C15	-0.55 (19)
C16—C17—C18—C23	-176.6 (2)	C8—C15—S2—C14	0.74 (19)
C24—C17—C18—C23	5.4 (4)	C16-C15-S2-C14	-179.94 (19)
C23-C18-C19-C20	-0.4 (4)	C20-C19-S3-C16	177.5 (2)
C17—C18—C19—C20	-178.1 (2)	C18—C19—S3—C16	-0.24 (19)
C23-C18-C19-S3	177.46 (19)	C17—C16—S3—C19	0.72 (19)
C17—C18—C19—S3	-0.3 (3)	C15-C16-S3-C19	179.49 (19)
C18-C19-C20-C21	-0.4 (4)	C29—C30—S4—C31	178.3 (2)
S3—C19—C20—C21	-178.0 (2)	C25—C30—S4—C31	-1.62 (19)
C19—C20—C21—C22	1.2 (5)	C24—C31—S4—C30	2.02 (19)
C20—C21—C22—C23	-1.0 (5)	C32—C31—S4—C30	-177.8 (2)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.			

